当前位置: 首页 » 资讯 » 产业资讯 » 企业动态 » 正文

AIIA权威AI基准评测 瑞芯微RK3399数据抢眼

放大字体  缩小字体 发布日期:2019-03-13 15:27   来源:OFweek电子工程网  浏览次数:311
 3月6日,在“AI in 5G——引领新时代论坛”上,人工智能产业发展联盟(AIIA)正式发布“AIIA DNN benchmark V0.5”首轮评估结果。该评估在AIIA权威测试平台完成,基于端侧推断任务的深度神经网络处理器基准测试。在四大典型应用场景下,能够客观反映具有深度学习处理能力的处理器或加速器的性能水平。评估结果显示,海思麒麟980和瑞芯微RK3399表现上佳。

image.png

“AIIA DNN benchmark V0.5”评估的标准较为严苛,包含四大典型场景和两大类评测指标等,指标包含速度(fps)和算法性能,如top1 、top5、mAP、mIoU、PSNR等。同时,这也是深度学习处理器领域首次区分整型和浮点对比的Benchmark。福州瑞芯微电子的RK3399开发板展现出抢眼数据。

image.png

采用28nm工艺的福州瑞芯微电子RK3399开发板,在评估中展现出超强性能。评估数据显示,在浮点模型不需要定点化重新训练的情况下,int8计算以精度损失最大为1%的代价,达到相对于浮点计算两倍的性能。

image.png

此外,在Interpretation评测中,AIIA第一次尝试在基准测试中将量化和浮点模型分开评测。而福州瑞芯微电子RK3399开发板同样取得多项优异数据,在业内处于前列水平。

image.png

值得一提的是,福州瑞芯微电子RK3399开发板数据抢眼的背后,离不开前沿技术的支持。比如RK3399融入了Tengine,后者是由OPEN AI LAB开发的一款轻量级模块化高性能神经网络推理引擎。Tengine专门针对Arm嵌入式设备优化,且无需依赖第三方库,可跨平台使用支持Android、Liunx等。

Tengine支持各类常见卷积神经网络,包括SqueezeNet,MobileNet,AlexNet,ResNet等,支持层融合、8位量化等优化策略。通过调用针对不同CPU微构架优化的HCL库,能将Arm CPU的性能充分挖掘出来。而RK3399的Cortex-A72单线程运行移动端常用的MobileNet,一次只需要111ms。

在IoT设备、智能交互设备、个人电脑、机器人等人工智能设备的创新与研发上,福州瑞芯微电子已经在技术上展现出领先优势,除了RK3399以外,旗舰级人工智能芯片RK3399Pro同样极具看点,其首次采用CPU+GPU+NPU的硬件结构设计。这一芯片集成的NPU(神经网络处理器)融合了福州瑞芯微电子在机器视觉、语音处理、深度学习等方面的关键技术,片上NPU运算性能高达3.0TOPs,具备高性能、低功耗、开发易等优势。

image.png

人工智能芯片大变革时代,人工智能产业发展联盟(AIIA) “AIIA DNN benchmark V0.5”权威测试平台的亮相以及首轮数据发布,或将终结AI芯片缺乏统一数据测试标准的局面,加速人工智能芯片的技术蜕变与进化。

 
【版权声明】本网站所刊原创内容之著作权为「中国半导体照明网」网站所有,如需转载,请注明文章来源——中国半导体照明网;如未正确注明文章来源,任何人不得以任何形式重制、复制、转载、散布、引用、变更、播送或出版该内容之全部或局部。
 
[ 资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]

 
0条 [查看全部]  相关评论

 
关于我们 | 联系方式 | 使用协议 | 版权隐私 | 诚聘英才 | 广告服务 | 意见反馈 | 网站地图 | RSS订阅